3.7.20 \(\int \frac {1}{(c x)^{7/2} \sqrt {a+b x^2}} \, dx\) [620]

Optimal. Leaf size=306 \[ -\frac {2 \sqrt {a+b x^2}}{5 a c (c x)^{5/2}}+\frac {6 b \sqrt {a+b x^2}}{5 a^2 c^3 \sqrt {c x}}-\frac {6 b^{3/2} \sqrt {c x} \sqrt {a+b x^2}}{5 a^2 c^4 \left (\sqrt {a}+\sqrt {b} x\right )}+\frac {6 b^{5/4} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right )|\frac {1}{2}\right )}{5 a^{7/4} c^{7/2} \sqrt {a+b x^2}}-\frac {3 b^{5/4} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right )|\frac {1}{2}\right )}{5 a^{7/4} c^{7/2} \sqrt {a+b x^2}} \]

[Out]

-2/5*(b*x^2+a)^(1/2)/a/c/(c*x)^(5/2)+6/5*b*(b*x^2+a)^(1/2)/a^2/c^3/(c*x)^(1/2)-6/5*b^(3/2)*(c*x)^(1/2)*(b*x^2+
a)^(1/2)/a^2/c^4/(a^(1/2)+x*b^(1/2))+6/5*b^(5/4)*(cos(2*arctan(b^(1/4)*(c*x)^(1/2)/a^(1/4)/c^(1/2)))^2)^(1/2)/
cos(2*arctan(b^(1/4)*(c*x)^(1/2)/a^(1/4)/c^(1/2)))*EllipticE(sin(2*arctan(b^(1/4)*(c*x)^(1/2)/a^(1/4)/c^(1/2))
),1/2*2^(1/2))*(a^(1/2)+x*b^(1/2))*((b*x^2+a)/(a^(1/2)+x*b^(1/2))^2)^(1/2)/a^(7/4)/c^(7/2)/(b*x^2+a)^(1/2)-3/5
*b^(5/4)*(cos(2*arctan(b^(1/4)*(c*x)^(1/2)/a^(1/4)/c^(1/2)))^2)^(1/2)/cos(2*arctan(b^(1/4)*(c*x)^(1/2)/a^(1/4)
/c^(1/2)))*EllipticF(sin(2*arctan(b^(1/4)*(c*x)^(1/2)/a^(1/4)/c^(1/2))),1/2*2^(1/2))*(a^(1/2)+x*b^(1/2))*((b*x
^2+a)/(a^(1/2)+x*b^(1/2))^2)^(1/2)/a^(7/4)/c^(7/2)/(b*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 306, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {331, 335, 311, 226, 1210} \begin {gather*} -\frac {3 b^{5/4} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right )|\frac {1}{2}\right )}{5 a^{7/4} c^{7/2} \sqrt {a+b x^2}}+\frac {6 b^{5/4} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right )|\frac {1}{2}\right )}{5 a^{7/4} c^{7/2} \sqrt {a+b x^2}}-\frac {6 b^{3/2} \sqrt {c x} \sqrt {a+b x^2}}{5 a^2 c^4 \left (\sqrt {a}+\sqrt {b} x\right )}+\frac {6 b \sqrt {a+b x^2}}{5 a^2 c^3 \sqrt {c x}}-\frac {2 \sqrt {a+b x^2}}{5 a c (c x)^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((c*x)^(7/2)*Sqrt[a + b*x^2]),x]

[Out]

(-2*Sqrt[a + b*x^2])/(5*a*c*(c*x)^(5/2)) + (6*b*Sqrt[a + b*x^2])/(5*a^2*c^3*Sqrt[c*x]) - (6*b^(3/2)*Sqrt[c*x]*
Sqrt[a + b*x^2])/(5*a^2*c^4*(Sqrt[a] + Sqrt[b]*x)) + (6*b^(5/4)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a
] + Sqrt[b]*x)^2]*EllipticE[2*ArcTan[(b^(1/4)*Sqrt[c*x])/(a^(1/4)*Sqrt[c])], 1/2])/(5*a^(7/4)*c^(7/2)*Sqrt[a +
 b*x^2]) - (3*b^(5/4)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1
/4)*Sqrt[c*x])/(a^(1/4)*Sqrt[c])], 1/2])/(5*a^(7/4)*c^(7/2)*Sqrt[a + b*x^2])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 311

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 331

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c
*(m + 1))), x] - Dist[b*((m + n*(p + 1) + 1)/(a*c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin {align*} \int \frac {1}{(c x)^{7/2} \sqrt {a+b x^2}} \, dx &=-\frac {2 \sqrt {a+b x^2}}{5 a c (c x)^{5/2}}-\frac {(3 b) \int \frac {1}{(c x)^{3/2} \sqrt {a+b x^2}} \, dx}{5 a c^2}\\ &=-\frac {2 \sqrt {a+b x^2}}{5 a c (c x)^{5/2}}+\frac {6 b \sqrt {a+b x^2}}{5 a^2 c^3 \sqrt {c x}}-\frac {\left (3 b^2\right ) \int \frac {\sqrt {c x}}{\sqrt {a+b x^2}} \, dx}{5 a^2 c^4}\\ &=-\frac {2 \sqrt {a+b x^2}}{5 a c (c x)^{5/2}}+\frac {6 b \sqrt {a+b x^2}}{5 a^2 c^3 \sqrt {c x}}-\frac {\left (6 b^2\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt {a+\frac {b x^4}{c^2}}} \, dx,x,\sqrt {c x}\right )}{5 a^2 c^5}\\ &=-\frac {2 \sqrt {a+b x^2}}{5 a c (c x)^{5/2}}+\frac {6 b \sqrt {a+b x^2}}{5 a^2 c^3 \sqrt {c x}}-\frac {\left (6 b^{3/2}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+\frac {b x^4}{c^2}}} \, dx,x,\sqrt {c x}\right )}{5 a^{3/2} c^4}+\frac {\left (6 b^{3/2}\right ) \text {Subst}\left (\int \frac {1-\frac {\sqrt {b} x^2}{\sqrt {a} c}}{\sqrt {a+\frac {b x^4}{c^2}}} \, dx,x,\sqrt {c x}\right )}{5 a^{3/2} c^4}\\ &=-\frac {2 \sqrt {a+b x^2}}{5 a c (c x)^{5/2}}+\frac {6 b \sqrt {a+b x^2}}{5 a^2 c^3 \sqrt {c x}}-\frac {6 b^{3/2} \sqrt {c x} \sqrt {a+b x^2}}{5 a^2 c^4 \left (\sqrt {a}+\sqrt {b} x\right )}+\frac {6 b^{5/4} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right )|\frac {1}{2}\right )}{5 a^{7/4} c^{7/2} \sqrt {a+b x^2}}-\frac {3 b^{5/4} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right )|\frac {1}{2}\right )}{5 a^{7/4} c^{7/2} \sqrt {a+b x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.02, size = 56, normalized size = 0.18 \begin {gather*} -\frac {2 x \sqrt {1+\frac {b x^2}{a}} \, _2F_1\left (-\frac {5}{4},\frac {1}{2};-\frac {1}{4};-\frac {b x^2}{a}\right )}{5 (c x)^{7/2} \sqrt {a+b x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((c*x)^(7/2)*Sqrt[a + b*x^2]),x]

[Out]

(-2*x*Sqrt[1 + (b*x^2)/a]*Hypergeometric2F1[-5/4, 1/2, -1/4, -((b*x^2)/a)])/(5*(c*x)^(7/2)*Sqrt[a + b*x^2])

________________________________________________________________________________________

Maple [A]
time = 0.06, size = 219, normalized size = 0.72

method result size
default \(-\frac {6 \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {2}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \EllipticE \left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a b \,x^{2}-3 \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {2}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \EllipticF \left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a b \,x^{2}-6 b^{2} x^{4}-4 a b \,x^{2}+2 a^{2}}{5 x^{2} \sqrt {b \,x^{2}+a}\, c^{3} \sqrt {c x}\, a^{2}}\) \(219\)
risch \(-\frac {2 \sqrt {b \,x^{2}+a}\, \left (-3 b \,x^{2}+a \right )}{5 a^{2} x^{2} c^{3} \sqrt {c x}}-\frac {3 b \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, \EllipticE \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {\sqrt {-a b}\, \EllipticF \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}\right ) \sqrt {c x \left (b \,x^{2}+a \right )}}{5 a^{2} \sqrt {b c \,x^{3}+a c x}\, c^{3} \sqrt {c x}\, \sqrt {b \,x^{2}+a}}\) \(225\)
elliptic \(\frac {\sqrt {c x \left (b \,x^{2}+a \right )}\, \left (-\frac {2 \sqrt {b c \,x^{3}+a c x}}{5 c^{4} a \,x^{3}}+\frac {6 \left (c \,x^{2} b +a c \right ) b}{5 a^{2} c^{4} \sqrt {x \left (c \,x^{2} b +a c \right )}}-\frac {3 b \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, \EllipticE \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {\sqrt {-a b}\, \EllipticF \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}\right )}{5 a^{2} c^{3} \sqrt {b c \,x^{3}+a c x}}\right )}{\sqrt {c x}\, \sqrt {b \,x^{2}+a}}\) \(250\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c*x)^(7/2)/(b*x^2+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/5/x^2*(6*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-x*b/(-a
*b)^(1/2))^(1/2)*EllipticE(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*a*b*x^2-3*((b*x+(-a*b)^(1/2))/
(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)^(1/2))^(1/2)*EllipticF(((b*x
+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*a*b*x^2-6*b^2*x^4-4*a*b*x^2+2*a^2)/(b*x^2+a)^(1/2)/c^3/(c*x)^(
1/2)/a^2

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)^(7/2)/(b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(b*x^2 + a)*(c*x)^(7/2)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.33, size = 65, normalized size = 0.21 \begin {gather*} \frac {2 \, {\left (3 \, \sqrt {b c} b x^{3} {\rm weierstrassZeta}\left (-\frac {4 \, a}{b}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, a}{b}, 0, x\right )\right ) + {\left (3 \, b x^{2} - a\right )} \sqrt {b x^{2} + a} \sqrt {c x}\right )}}{5 \, a^{2} c^{4} x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)^(7/2)/(b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

2/5*(3*sqrt(b*c)*b*x^3*weierstrassZeta(-4*a/b, 0, weierstrassPInverse(-4*a/b, 0, x)) + (3*b*x^2 - a)*sqrt(b*x^
2 + a)*sqrt(c*x))/(a^2*c^4*x^3)

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 7.51, size = 51, normalized size = 0.17 \begin {gather*} \frac {\Gamma \left (- \frac {5}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {5}{4}, \frac {1}{2} \\ - \frac {1}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 \sqrt {a} c^{\frac {7}{2}} x^{\frac {5}{2}} \Gamma \left (- \frac {1}{4}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)**(7/2)/(b*x**2+a)**(1/2),x)

[Out]

gamma(-5/4)*hyper((-5/4, 1/2), (-1/4,), b*x**2*exp_polar(I*pi)/a)/(2*sqrt(a)*c**(7/2)*x**(5/2)*gamma(-1/4))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)^(7/2)/(b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(b*x^2 + a)*(c*x)^(7/2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{{\left (c\,x\right )}^{7/2}\,\sqrt {b\,x^2+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((c*x)^(7/2)*(a + b*x^2)^(1/2)),x)

[Out]

int(1/((c*x)^(7/2)*(a + b*x^2)^(1/2)), x)

________________________________________________________________________________________